THEORETICAL FOUNDATION S 

THEORETICAL FOUNDATION S 

REVIEW O F PREVIOUS RESEARC H

Geometri c inspection o f flexible parts

Traditional toleranc e analysi s methods , suc h a s Root Sum Square method an d Monte Carlo simulation (Crevelin g (1997)) , ar e no t applicabl e t o complian t part s suc h a s shee t meta l assemblies becaus e o f possible part deformations durin g th e assembl y process. Ove r the past years, differen t method s hav e bee n presente d t o predic t dimensiona l variatio n o n flexible parts, especiall y o n shee t meta l assemblies . Mos t o f th e method s ar e base d o n th e Finite Element Method. Li u an d H u (1997 ) presente d a mode l t o analyz e th e effec t o f componen t deviations and assembly spring-bac k o n assembly variatio n b y applying linea r mechanics and statistics. Usin g FEM , the y constructe d a sensitivit y matri x fo r complian t part s o f comple x shapes. Th e sensitivit y matri x establishe d a linea r relationshi p betwee n th e incomin g par t deviation an d th e outpu t assembl y deviation . Chan g an d Gossar d (1997 ) presente d th e transformation vector s t o describ e variatio n an d displacemen t o f features. The y modele d th e parts and tooling a s groups of features. Th e method represente d th e interaction betwee n parts and tooling by contac t chains. A contact modeling algorithm implemente d int o the Method o f Influence Coefficien t t o prevent penetration s betwee n parts has been presented b y Dahlstro m and Lindkvist (2007).
Non-contact 3 D digitizin g system s expose d a ne w horizo n i n geometri c inspectio n o f bot h rigid an d nonrigi d parts , becaus e the y delive r muc h mor e dat a tha n mechanica l probes , i n a shorter time . Weckenman n an d Gabbi a (2005 ) propose d a measurin g metho d usin g virtua l distortion compensation . Fring e projectio n system s ar e suitabl e fo r th e fast an d contac t fre e measurement o f parts without clamping. They used the measurement resul t to extract feature s of th e objec t lik e hole s o r edges . Som e o f thes e wer e relevan t fo r th e assembl y process ; others wer e subjec t t o furthe r inspection . Fro m th e informatio n abou t th e transformatio n o f the assembl y feature s fro m thei r actua l t o thei r nomina l position , virtua l distortio n compensation wa s use d t o calculat e featur e parameter s o f th e distortio n compensate d shape Their metho d wa s no t completel y automate d becaus e th e suggeste d metho d neede d som e human challenge s t o identif y th e correlatio n betwee n som e specia l point s lik e hole s an d assembly joint positions. These le d the controller to find the boundary conditions o f the FEM problem. Besides , transformin g th e poin t clou d t o a compute r aide d analyzabl e mode l i s a very time-consumin g process . I t seem s tha t thi s metho d i s no t suitabl e fo r reall y flexible parts becaus e the y hav e no t considere d th e effec t o f gravit y an d th e 3 D situatio n whic h th e part has scarmed. The concep t o f th e Small Displacement Torsor (SDT ) ha s bee n develope d b y Bourde t an d Clement (1976 ) to solve the general problem of the fit of a geometrical surfac e mode l to a set of points using rigid bod y movements. Lartigue , Thiebaut e t al. (2006) too k advantag e o f the possibilities offere d b y voxe l representatio n an d SD T methods fo r dimensiona l metrolog y o f flexible parts . Thi s time , the y considere d th e effec t o f gravit y an d spatia l situatio n o f a scanned part . Thi s metho d i s fundamentall y base d o n findin g th e correlatio n betwee n th e cloud o f all measure d point s an d CA D meshe d data . I n fact , th e SD T is mor e suitabl e fo r a small deformation . Mor e accurat e results ca n eve n b e achieve d i f one considers th e effec t o f material flexibility.
Abenhaim, Taha n e t al . (2009 ) develope d iterative displacement inspection (IDI ) whic h smoothly deforme d th e CA D mes h dat a unti l matche d t o th e rang e data . Thei r metho d wa s
based o n optima l ste p nonrigi d IC P algorithm s (Amberg , Romdhan i e t al . (2007)) . Th e proposed ID I metho d wa s full o f limitations. Their metho d wa s no t teste d i n non-continuou s areas suc h a s holes, an d th e poin t clou d neede d t o b e dens e enoug h becaus e th e method’ s similarity measur e wa s only based o n the nearest distanc e calculation. Th e majo r flaw o f this method wa s hidde n i n th e fac t tha t i t strongl y depende d o n findin g som e trial s an d prio r flexibility parameter s whic h coul d var y dependin g o n thickness . Furthermore , th e metho d supposes tha t th e boundar y o f measured parts is without defec t s o the metho d i s not suitabl e in th e cas e o f shrinkage . Th e mentione d drawback s caus e th e ID I t o b e ineffectiv e i n rea l engineering applications.  Including part compliance wit h intrinsic geometry of surface i n metrolog y o f free-for m surfaces, is an area of research pioneered i n this thesis.

Rigi d and nonrigid surfac e registratio n

Parallel t o mechanica l engineer s bu t i n differen t fields lik e Computer science. Biomedical engineering an d Pattern recognition, ton s o f researc h ha s bee n don e o n Rigi d an d Nonrigi d Registration an d deformabl e surfac e compariso n domains . Bes l an d McKa y (1992 ) developed a n iterativ e metho d fo r th e rigi d registratio n o f 3 D shapes . Th e ide a behin d th e iterative closest poin t (ICP ) algorithms is simple: give n two surfaces, Xand Y, find the rigi d transformation (R, t), s o tha t th e transformed surfac e Y’= RY + / is as ‘close ‘ a s possible t o X. ‘Closeness ‘ i s expressed i n terms o f some surface-to-surfac e distanc e d (RY + /, X). Mor e precisely, ICP can be formulated a s a minimization problem : d ,cp(X. Y) = min «,, d{RY +t,X) (1.1 ) This algorith m differ s i n th e choic e o f th e surface-to-surfac e distanc e d fY’ X) an d th e numerical metho d fo r solvin g th e minimizatio n problem . Th e IC P algorith m i s on e o f th e common technique s fo r refinemen t o f partia l 3 D surface s (o r models ) an d man y varian t techniques have been investigated . However, searchin g the closest poin t i n the ICP algorithm is a computationall y expensiv e task . I n orde r t o accelerat e th e spee d o f closes t poin t searching, some search technique s ar e commonly employed . Many variants of ICP have bee n proposed, affectin g al l phases of the algorithm – from th e selection an d matching of points, to the minimizatio n strategy . Th e correspondenc e betwee n point s i s usuall y performe d b y a nearest-neighbour searc h usin g a k-d tree structur e fo r optimizatio n (Bentle y (1975)) . The k – d tre e i s a spatia l dat a structur e originall y propose d t o allo w efficien t searc h o n orthogona l range querie s an d neares t neighbou r querie s (Bentle y (1975)) . Greenspa n an d Godi n (2001 ) proposed a significan t improvemen t i n th e neares t neighbou r querie s b y usin g correspondences o f previou s iteration s o f th e IC P an d searchin g onl y i n thei r smal l neighbourhood t o updat e th e correspondences . Anothe r importan t strateg y t o spee d u p th e  registration proces s use s samplin g technique s t o reduc e th e numbe r o f points i n th e view s (Rusinkiewicz an d Levo y (2001)). Myronenko, Son g e t al . (2007 ) introduce d a probabilisti c metho d fo r rigid , affine , an d nonrigid poin t se t registration , calle d th e Coherent Point Drift algorithm. The y considere d the alignmen t o f tw o poin t set s a s th e probabilit y densit y estimation , wher e on e poin t se t represents th e Gaussia n Mixtur e Mode l centroid , an d th e othe r represent s th e dat a point . They iterativel y fitte d th e GM M centroid s b y maximizin g th e likelihoo d an d foun d th e posterior probabilitie s o f centroids , whic h provid e th e correspondenc e probability . Th e method base d o n forcin g th e GM M centroid s t o mov e coherentl y a s a group , preserve d th e topological structur e o f the point sets. Schwartz, Sha w e t al . (1989 ) wer e th e first tha t use d Multidimensional Scaling (MDS ) methods t o flatten th e curve d convolute d surface s o f th e brai n i n orde r t o stud y functiona l architectures an d th e neura l map s embedde d i n them . Fo r some , thei r wor k wa s a breakthrough i n which surfac e geometr y wa s translated int o a plane. But the plane restrictio n introduced deformation s tha t actuall y prevente d th e proper matchin g o f convolute d surfaces .
This problem can be solved if higher dimensions of the embedding spac e ar e considered . The Fast marching method wa s introduce d b y Sethia n (1996 ) a s a computationally efficien t solution t o Eikonal equations o n flat domains. A related metho d wa s presente d b y Tsitsikli s (1995). Th e fas t marchin g metho d wa s extende d t o triangulate d surface s b y Kimme l an d Sethian (1998). The extende d metho d solve d Eikona l equation s o n flat rectangula r o r curve d triangulated domains. Elbaz and Kimme l (2003 ) presented a blend of topology an d statistica l methods, to introduc e the concept of Invariant signature fo r surfaces. Their metho d wa s based o n fast marchin g o n triangulated domai n algorith m followe d b y MD S technique . The y hav e practicall y transformed th e proble m o f matchin g isometric-nonrigi d surface s int o th e proble m o f matching o f rigid surfaces. Usin g MDS, they embedded surface s X and Y into some commo n  embedding spac e Z calle d Canonical form an d the n measure d th e similaritie s usin g th e Hausdorff’ distance. Thei r metho d i s strongl y base d o n th e Kimme l an d Sethia n (1998 ) method i n computing the geodesic distanc e on triangular meshes.

Le rapport de stage ou le pfe est un document d’analyse, de synthèse et d’évaluation de votre apprentissage, c’est pour cela chatpfe.com propose le téléchargement des modèles complet de projet de fin d’étude, rapport de stage, mémoire, pfe, thèse, pour connaître la méthodologie à avoir et savoir comment construire les parties d’un projet de fin d’étude.

Table des matières

INTRODUCTION 1 
CHAPTER 1 REVIEW O F PREVIOUS RESEARC H 1
1.1 Geometri c inspectio n o f flexible parts
1.2 Rigi d and nonrigid surfac e registratio n
CHAPTER 2 THEORETICAL FOUNDATION S 
2.1 Metri c space s
2.2 Poin t clouds techniques
2.2.1 Smoothin g o f noisy data
2.2.2 Poin t cloud samplin g
2.2.3 Fas t marching method
2.3 Isometri c embedding
2.4 Generalize d multidimensiona l scalin g
CHAPTER 3 NONRIGID GEOMETRIC INSPECTIO N 
3.1 Geometr y o f flexible parts
3.2 Identificatio n o f geometrical deviatio n
3.3 Ne w definition fo r maximum geometri c deviation
3.4 Numerica l inspectio n fixtur e
3.5 Generalize d numerica l inspection fixture
CHAPTER4 RESULTS 
4.1 Geometri c inspectio n i n absence of spring-back
4.2 Inspectio n results with GNIF
CONCLUSION 5 
Comparison o f methods
Limitations of GNIF
Contributions
RECOMMENDATIONS
ANNEX I PUBLICATION S
ANNEX II SMACO F algorithm
ANNEX III Hausdorf f distanc e algorithm
ANNEX I V GLOSSAR Y
REFERENCES

Rapport PFE, mémoire et thèse PDFTélécharger le rapport complet

Télécharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *