Sea-ice and surface water assemblages

Sea-ice and surface water assemblages

ENRICHMENT OF NUTRIENTS AND MICROORGANISMS IN NEWL y FORMED SEA ICE ON THE MACKENZIE SHELF: SIGNIFICANCE OF HETEROTROPHIC REGENERATION AND EXOPOLYMERIC SUBSTANCES :

La glace de mer nouvellement formรฉe a รฉtรฉ รฉchantillonnรฉe ร  32 stations rรฉparties sur le plateau continental du Mackenzie, entre le 30 septembre et le 10 novembre 2003. ร€ chaque station, des รฉchantillons de glace de mer et d’eau de surface ont รฉtรฉ prรฉlevรฉs afin de dรฉterminer les concentrations et l’enrichissement en nutriments, en substances exopolymรฉriques (EPS, mesurรฉs avec du bleu Alcian), en chlorophylle a (chI a), en protistes autotrophes et hรฉtรฉrotrophes, ainsi qu’en bactรฉries hรฉtรฉrotrophes. Des incubations au noir ont รฉtรฉ menรฉes afin d’estimer les taux de rรฉgรฉnรฉration nette par les hรฉtรฉrotrophes, dans la glace d’une รฉpaisseur < 5 cm. Nos rรฉsultats montrent que les protistes autotrophes de grande taille (~ 5 ~m) sont enrichis de faรงon sรฉlective au cours de la formation de la glace et prรฉsentent l’ indice d’ enrichissement le plus รฉlevรฉ (Is = 62), bien que les protistes hรฉtรฉrotrophes (Is = 19), les EPS (Is = 17), les bactรฉries (Is = 6), et les nutriments azotรฉs (ls = 3 ร  5) soient aussi enrichis dans la glace de mer. Des relations significatives ont รฉtรฉ observรฉes entre les concentrations en EPS et celles en chI a totale dans la glace (r = 0.59, P < 0.001) et entre les indices d’enrichissement des EPS et des protistes autotrophes (r = 0.48, P < 0.01), ce qui suggรจre que les EPS sont produits par les algues incorporรฉes dans la glace. Ces rรฉsultats indiquent aussi que la prรฉsence des EPS favoriserait l’enrichissement sรฉlectif des protistes autotrophes de grande taille. La rรฉgรฉnรฉration par les hรฉtรฉrotrophes a contribuรฉ ร  l’enrichissement du NH4 dans la glace, avec un taux de rรฉgรฉnรฉration moyen de 0.48 ~M N dยท l , et en contribuant 67 % des concentrations en NH4 mesurรฉes dans la glace. La rรฉgรฉnรฉration en NH4 รฉtait aussi couplรฉe ร  la consommation de Si(OH)4 et corrรฉlรฉe de faรงon significative avec les concentrations en EPS dans la glace. Nos rรฉsultats suggรจrent que les EPS favorisent la rรฉgรฉnรฉration du NH4 dans la glace, en procurant une source de carbone pour les protistes hรฉtรฉrotrophes et/ou un substrat pour les bactรฉries.

High biomasses of algae and other protists can accumulate in Arctic first-year sea ice in the spring (i.e. sea-ice al gal blooms in April-May, Smith and Herman 1991, Michel et al. 1996, Melnikov et al. 2002). However, algal cells and other microorganisms are present within the sea ice for several months prior to the beginning of the spring bloom (Gradinger & lkiivalko 1998, Melnikov et al. 2002). Microorganisms from the water column and ev en the benthos are incorporated in the sea ice during its formation, which occurs primarily between September and December on the Canadian Arctic shelves (Canadian ice services 2002). Organisms incorporated in the sea ice during the fall can overwinter in the sea-ice matrix and are the founding members of the spring bloom community (Zhang et al. 1998).

In the Arctic Ocean, suspension freezing (Campbell & Collin 1958) is the most important process for the accumulation of inorganic sediments within the sea ice (Reimnitz et al. 1992). This same process leads to the accumulation ofmicroorganisms in newly formed sea ice (Garrison et al. 1983, Reimnitz et al. 1993). Suspension freezing occurs under cold turbulent conditions which can lead to a supercooled water column. Once supercooled, frazil sea ice (i.e. suspended ice crystals) forms in the water column and rises to the surface where it accumulates as new ice with columnar ice growth continuing after frazil formation ends (Weeks & Ackley 1982, Eicken 2003).

Inorganic sediments and microorganisms can adhere to individual frazil crystals as they rise through the water column. Frazil fonnation may occur as deep as 25-30 m so that small particles can be picked up directly from the benthos on shallow shelves (Reimnitz et al. 1992). Large quantities of sediment and benthic microorganisms can also be incorporated into newly fonned sea ice when frazil adheres to coarse particles on the sea-floor fonning unconsolidated masses of anchor ice (Reimnitz et al. 1992). Under calm conditions the anchor ice, along with entrapped particles, can float to the surface and become incorporated into the newly fonned sea ice. The fonnation of anchor ice and deep frazil can explain the numerous benthic algal species found in Arctic sea ice during the spring bloom (von Quillfeldt et al. 2003).

Acknowledgements:

This project was supported by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada (Research Network grant to C.M and M.G.; Individual and Northern Research Supplement Discovery grants to M.G.) and from the Department of Fisheries and Oceans (DFO) Academic Science Subvention Pro gram to M.G. and C.M., and Science Strategic Fund to C.M. Partial operating funds for the CCGS Amundsen were provided by the International Joint Ventures Fund of the Canada Foundation for Innovation and the Fonds quรฉbรฉcois de la recherche sur la nature et les technologies (FQRNT). A.R. received post-graduate scholarships from NSERC, UQAR, the Fondation de l’UQAR (bourse Estelle-Laberge) and the Institut des sciences de la mer de Rimouski (ISMER), and financial support from Indian and Northern Affairs Canada for fieldwork. We sincerely thank the officers and crew of the CCGS Amundsen for their support ofthis research expedition; M. Poulin for assisting in the field and laboratory; and J .ร‰. Tremblay and K. Simpson for conducting the nutrient analysis. This is a contribution to the research programs of the Canadian Arctic ShelfExchange Study (CASES), the Freshwater Institute (Fisheries and Oceans Canada), ISMER and Quรฉbec-Ocรฉan.

EVIDENCE OF AN ACTIVE MICROBIAL FOOD WEB IN SEA ICE AND SURFACE WATERS ON THE MACKENZIE SHELF (CANADIAN ARCTIC) DURING THE WINTER-SPRING TRANSITION:

La dynamique des bactรฉries hรฉtรฉrotrophes a รฉtรฉ รฉtudiรฉe dans la glace de mer et les eaux de surface du plateau du Mackenzie (mer de Beaufort), entre le 5 mars et le 3 mai 2004. ร€ 12 occasions, le broutage par les protistes hรฉtรฉrotrophes sur les bactรฉries a รฉtรฉ mesurรฉ suivant la mรฉthode de disparition de bactรฉries fluorescentes (fluorescently labeled bacteria) sur des รฉchantillons de glace prรฉlevรฉs sous couvert de neige รฉpais et mince, ainsi que sur des รฉchantillons d’eau de surface. Concurremment, des รฉchantillons de glace et d’eau de surface ont รฉtรฉ analysรฉs afin de mesurer les concentrations en carbone organique dissous (DOC), en substances exopolymรฉriques (EPS), et en chlorophylle a (chi a), ainsi que l’abondance des protistes et des bactรฉries. L’abondance totale des bactรฉries รฉtait plus รฉlevรฉe dans la glace de mer que dans l’eau de surface (p < 0.05). Toutefois, les concentrations en DOC et l’abondance des grosses bactรฉries (20.7 !lm) n’รฉtaient pas statistiquement diffรฉrentes entre la glace et l’eau de surface (p > 0.20). Le broutage par les hรฉtรฉrotrophes (HP) sur les bactรฉries reprรฉsentait en moyenne, 27 % et 35 % de la biomasse bactรฉrienne dans la glace, sous couvert de neige รฉpais et mince, respectivement, et 29 % de cette biomasse dans les eaux de surface. Dans la glace, les taux d’ ingestion de la communautรฉ รฉtaient, en moyenne, de 1.9 et 1.7 x 103 bactรฉries HPI dI , sous couvert de neige รฉpais et mince, respectivement. Il semble que les fortes concentrations en EPS pendant la pรฉriode de floraison des algues de glace auraient pu interfรฉrer avec l’activitรฉ de broutage des protistes hรฉtรฉtrotrophes, tel qu’indiquรฉ par les corrรฉlations nรฉgatives entre les taux d’ingestion des hรฉtรฉrotrophes >5 !lm et les concentrations en EPS (T = -0.46 P < 0.01). Dans les eaux de surface, les taux d’ingestion par la communautรฉ hรฉtรฉrotrophe รฉtaient รฉlevรฉs, en moyenne 7.1 x 103 bacteria HPI dI , et ce possiblement en raison de la prรฉsence de protistes mixotrophes. Le broutage sur les bactรฉries รฉtait suffisant pour combler les besoins en carbone des hรฉtรฉrotrophes ::::5 !lm, ce qui n’รฉtait pas le cas pour les hรฉtรฉrotrophes >5 !lm pendant la pรฉriode de floraison des algues de glace. Les EPS pourraient constituer une source alternative de carbone pour ces derniers, particuliรจrement pendant la pรฉriode de floraison des algues de glace. Cette รฉtude met en รฉvidence la prรฉsence d’ un rรฉseau microbien hรฉtรฉrotrophe actif dans la glace de mer annuelle, pendant la pรฉriode prรฉcรฉdant, ainsi qu’au cours de la pรฉriode de floraison des algues de glace. Cette รฉtude met aussi de l’avant l’importance du DOC et des EPS en tant que composantes intรฉgrales du rรฉseau microbien dans la glace de mer et les eaux de surface du plateau continental arctique.

At the high and low snow coyer sampling sites, multiple cores were collected for routine measurement of DOC, exopolymeric substances (EPS), chlorophyll a (chI a), protist and bacterial abundances, and for fluorescently labeled bacteria (FLB) grazing experiments. The bottom 4 cm of three to five ice cores was pooled together in an isothermal container, to obtain one sample for each snow coyer depth. Sterile g]oves were worn at a11 times during the manipulation of the cores. On each sampling day, water from the ice-water interface was also collected using a hand pump. One subsample of this surface water was analyzed for DOC, EPS, chI a and cells, a second was used for FLB grazing experiments and a third subsample was filtered on polycarbonate 0.2 ~m filters and added to the ice core sampI es to minimize osmotic stress during the melting process (Garrison & Buck 1986). A separate ice core, kept in a sterile Wbirl-Pak bag, was melted without the addition of filtered surface water for the analysis of sea-ice DOC. When necessary, sea-ice concentrations ofmeasured variables and experimental results were corrected for the dilution from the addition of seawater during the melting process.

Grazing rates:

Significant linear decreases in FLB concentrations were observed over the entire incubation period for aIl grazing experiments except under high snowยทcover on 28 April. In this one experiment, a linear decrease was observed during the first 10 h of the experiment, with no further decrease for the remainder of the 48 h experiment. The result ofthis experiment was excluded from our dataset. For aIl grazing experiments, the regression coefficients (i.e. s]opes) were significantly different from zero (p < 0.05).

Discussion:

Arctic sea ice appears to be a favorable growth environment for heterotrophic bacteria, as compared to the pelagic, as indicated by high bacterial abundances and large cell sizes observed in this study. Bacterial abundances in the sea ice on the Mackenzie shelf were within the range previously observed for Antarctic (Growing et al. 2004 and references therein) and Arctic sea ice (Bunch & Harland 1990, Gradinger & Zhang 1997). Bacterial abundances from the ice-water interface were also comparable with previous estimates for surface waters in the same are a (Garneau et al. 2006).

Grazing rates:

Community grazing rates, estimated by the disappearance of FLB in this study, are high in comparison to published results from other marine systems (e.g. Arctic Ocean, Sherr et al. 1997). Changes in environmental structure (i.e. ice brine channels versus melted sampI es) or salinity may have enhanced grazing rates in melted samples. The addition of FLB may have also enhanced grazing since larger prey can be preferentially selected and stimulate protistan grazing (Andersson et al. 1986). However, the average size of FLB (1.8 !lm) added was similar to the average size of observed bacteria (1.1 !lm) in the sea-ice samples. The FLB were also added in tracer concentrations (average 12% of natural sea-ice bacterial abundances) in order to limit the stimulation of grazing activity (McManus & Okubo 1991). Non-grazing losses ofFLB would have also resulted in an overestimation of FLB disappearance. Losses which could be taken into consideration include viral lysis, abiotic FLB breakdown and the attachment of FLB to particles.

SEASONAL STUDY OF SEA-ICE EXOPOLYMERIC SUBSTANCES ON THE MACKENZIE SHELF: IMPLICA TIONS FOR THE TRANSPORT OF SEA-ICE BACTERIA AND ALGAE :

Des รฉchantillons provenant de la couche infรฉrieure de la glace de mer, ร  deux sites reprรฉsentatifs d’un couvert de neige mince et รฉpais, ainsi que d’eau de surface, ont รฉtรฉ prรฉlevรฉs ร  21 occasions, entre le 24 fรฉvrier et le 20 juin 2004, dans la baie de Franklin (plateau continental du Mackenzie). Ces รฉchantillons ont รฉtรฉ traitรฉs pour analyse des substances exopolymรฉriques (EPS), du carbone organique particulaire (POC) et de la chlorophylle a (chI a). Les concentrations en EPS ont รฉtรฉ mesurรฉes sur des รฉchantillons de glace fondue, suite ร  une coloration au bleu Alcian. Les vitesses de chute de la chI a et des bactรฉries ont aussi รฉtรฉ รฉvaluรฉes en utilisant des colonnes ร  sรฉdimentation, afin de dรฉterminer le rรดle potentiel des EPS sur le transport de la biomasse associรฉe ร  la glace. Les concentrations en EPS dans la couche infรฉrieure de la glace รฉtaient faibles au cours du mois de mars (moyenne de 185 Ilg xeq. 1 -1 ) et ont augmentรฉ par la suite, pour atteindre des valeurs maximales de 4930 et 10500 Ilg xeq. 1 – 1 sous couvert de neige รฉpais et mince, respectivement. Les concentrations en EPS dans les eaux de surface se sont maintenues ร  des valeurs de deux ordres de magnitude plus faibles que celles observรฉes dans la glace. Dans la glace, les concentrations en EPS รฉtaient corrรฉlรฉes de faรงon significative avec les concentrations en chI a (T = 0.70, P < 0.01). Les algues de glace รฉtaient principalement responsables de la production de EPS dans la glace; la contribution des bactรฉries ร  cette production รฉtait mineure. Le carbone associรฉ aux EPS contribuait, en moyenne, ร  23 % des concentrations en POC dans la glace, avec une valeur maximale de 73 % au cours de la pรฉriode de fonte. Les vitesses de chute mรฉdianes de la chI a รฉtaient de 0.11 et 0.44 m dI sous couvert de neige รฉpais et mince, respectivement. Aucun effet significatif des EPS sur les vitesses de chute de la chI a n’a รฉtรฉ dรฉmontrรฉ. Toutefois, les vitesses de chute des bactรฉries auraient รฉtรฉ influencรฉes par la prรฉsence de EPS, soit en association avec des diatomรฉes, ou comme particules libres dans la glace. La prรฉsence de EPS sur les diatomรฉes favoriserait l’ attachement des bactรฉries sur les algues, et augmenterait ainsi les vitesses de chute des bactรฉries, alors que les vitesses de chute de bactรฉries associรฉes avec des particules libres de EPS, dont la flotabilitรฉ est positive, seraient rรฉduites. Les substances exopolymรฉriques contribuent de faรงon significative ร  la biomasse en carbone dans la glace de mer, et influencent la sรฉdimentation de cette biomasse. Ces rรฉsultats mettent en รฉvidence l’ importance du rรดle des EPS dans le cycle du carbone sur le plateau continental arctique.

Bottom sea ice, from under high and low snow cover, and surface water samples were collected in Franklin Bay (Mackenzie shelf) on 21 occasions between 24 February and 20 June 2004 and analyzed for exopolymeric substances (EPS), particulate organic carbon (POC) and chlorophyll a (chI a). Concentrations of EPS were measured using Alcian blue staining of melted ice samples. Chlorophyll a and bacterial sinking velocities were also assessed with settling columns, to determine the potential role of EPS in the transport of sea-ice biomass. Concentrations of EPS in the bottom ice were consistently low in March (avg. 185 flg xeq. 1 -1), after which they increased to maximum values of 4930 and 10500 flg xeq. ri under high and low snow cover, respectively. Concentrations of EPS in the surface water were consistently two orders of magnitude lower th an in the sea ice. Sea ice EPS concentrations were significantly correlated with sea-ice chi a biomass Cr = 0.70, P < 0.01). Sea-ice algae were primarily responsible for EPS production within the sea ice, whereas bacteria produced insignificant amounts of sea-ice EPS. EPS-carbon contributed, on average, 23% of POC concentrations within the sea ice, with maximum values reaching 72% during the melt period. Median chi a sinking velocities were 0.11 and 0.44 m d-I under high and low snow co ver, respectively. Exopolymeric substances had little effect on chi a sinking velocities. However, bacterial sinking velocities did appear to be influenced by diatom-associated and free EPS within the sea ice. Diatom-associated EPS could facilitate the attachment of bacteria to algae thereby increasing bacterial sinking velocities, whereas the sinking velocities of bacteria associated with positively buoyant, free EPS, could be reduced. Exopolymeric substances contributed significantly to the sea-ice carbon pool and influenced the sedimentation of sea-ice biomass, which emphasizes the important role of EPS in carbon cyc1ing on Arctic shelves.

In pelagic systems, exopolymeric substances in the form of TEP have been recognized as a key component of the carbon cycle, directly contributing to the carbon pool and influencing sedimentation and small-scale microbial processes such as nutrient uptake and bacterial productivity (see Passow 2002a). Previous studies of first-year pack ice in Antarctica (Meiners et al. 2004) and first-year, landfast and pack ice in the Arctic (Krembs & Engle 2001, Krembs et al. 2002, Meiners et al. 2003) have found high concentrations of EPS in the interior and bottom of the sea ice. The current study found EPS to be a significant contributor to sea-ice carbon on Canadian Arctic shelves, with concentrations reflecting spatial and temporal variations in the sea-ice community. Key relationships were identified between EPS, chI a and bacteria, showing that EPS can influence carbon cycling within the sea ice and upon the release of sea-ice biomass into the water column at the time ofice melt.

Altematively, if EPS were exported from the sea ice at the same rate as particulate organic material, the high EPS:chl a and EPS-carbon:POC ratios observed at the end of the season would only be explained by increased in situ EPS production. Under-ice sediment traps adjacent to our sampling station confirmed that sea-ice algae, which were mainly diatoms at the peak of the sea-ice algal bloom, were being released from the sea ice at the time of ice melt (T. Juul-Pedersen pers. comm.). This confirms that the low sea-ice chI a concentrations observed at the end of season represented a reduced abundance of diatoms rather than a decrease in the chI a content of algal cells. Assuming limited EPS production by bacteria, as previously discussed, the remaining algal community on the last sampling day would have had to increase EPS production by, on average, 15 fold to produce the observed EPS concentration. Such increases in EPS production are unlikely. Increases of only 1.5 to 5 fold in diatom extracellular carbohydrate production have been reported due to nutrient or environmental stress (Urbani et al. 2005, Abdullahi et al. 2006). Therefore, we conclude that increased in situ production of EPS did not likely explain the high EPS-carbon:POC and EPS:chl a ratios observed at the end ofthe sampling period, suggesting that free EPS were retained within the melting sea ice. The EPS retained in the sea ice could supply a pulse of organic carbon into surface waters after the majority of sea-ice biomass has been released into the water column.

CONCLUSION Gร‰Nร‰RALE:

In this study, heterotrophic microorganisms and exopolymeric substances (EPS) in newly formed and first-year sea ice were shown to have multiple roles in the cycling of organic carbon on the Mackenzie shelf. An extensive seasonal characterization of heterotrophic bacterial and protist communities is provided, including the assessment of heterotrophic bacterivory and nutrient regeneration. This study was conducted on the Mackenzie shelf which represents a large area of first-year sea ice in the Arctic. The results presented here are generally applicable to sea-ice organic carbon cycling on the extensive circumpolar shelves and potentially new areas offirst-year sea-ice formation that could develop as a result of Arctic warming (Comiso 2002, 2003, Polyakov et al. 2003).

Le rapport de stage ou le pfe est un document dโ€™analyse, de synthรจse et dโ€™รฉvaluation de votre apprentissage, cโ€™est pour cela chatpfe.com propose le tรฉlรฉchargement des modรจles complet de projet de fin dโ€™รฉtude, rapport de stage, mรฉmoire, pfe, thรจse, pour connaรฎtre la mรฉthodologie ร  avoir et savoir comment construire les parties dโ€™un projet de fin dโ€™รฉtude.

Table des matiรจres

INTRODUCTION Gร‰Nร‰RALEย 
The changing Arctic
Arctic sea ice
Ecological role offirst-year sea ice
Heterotrophic microorganisms
ExopolYlners
Research objectives
CHAPITRE 1
ENRICHMENT OF NUTRIENTS AND MICROORGANISMS IN NEWL y FORMED SEA ICE ON THE MACKENZIE SHELF: SIGNIFICANCE OF HETEROTROPHIC REGENERATION AND EXOPOLYMERIC SUBSTANCESย 
Rร‰SUMร‰
ABSTRACT
Introduction
Materials and Methods
Sampling and analyses
Regeneration rates
Statistical analyses
Results
Physical and chemical environment
Sea-ice development and thickness
Sea-ice and surface water assemblages
Enrichment
Ammonium regeneration rates
Discussion
Sea-ice asselnblages
Sea-ice EPS
Enrichment and selectivity in newly fonned sea ice
Nutrient regeneration
Conclusions
Acknowledgelnents
CHAPITRE II
EVIDENCE OF AN ACTIVE MICROBIAL FOOD WEB IN SEA ICE AND SURFACE WATERS ON THE MACKENZIE SHELF (CANADIAN ARCTIC) DURING THE WINTER-SPRING TRANSITION
Rร‰SUMร‰
ABSTRACT
Introduction
Materials and Methods
Sampling and analyses
Chlorophyll a, EPS and DOC
Bacteri a and protists
FLB grazing experiments
Statistical analyses
Results
Experimental conditions
Grazing rates
Heterotrophic carbon requirements
Discussion
DOC and EPS
Grazing rates
Ingestion rates
Carbon sources for heterotrophic protists
Conclusions
Acknowledgelnents
CHAPITRE III
SEASONAL STUDY OF SEA-ICE EXOPOLYMERIC SUBSTANCES ON THE MACKENZIE SHELF: IMPLICATIONS FOR THE TRANSPORT OF SEA-ICE BACTERIA AND ALGAEย 
Rร‰SUMร‰
ABSTRACT
Introduction
Materials and Methods
Results
Spatial and seasonal trends
Sinking velocities
Discussion
Producers of EPS in sea ice
EPS seasonal dynamics
Biogeochemical roles of EPS in sea ice
Conclusions
Acknowledgetnents
CONCLUSION Gร‰Nร‰RALE

Rapport PFE, mรฉmoire et thรจse PDFTรฉlรฉcharger le rapport complet

Tรฉlรฉcharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiรฉe. Les champs obligatoires sont indiquรฉs avec *