Le rayonnement photosynthétiquement actif

Besoin d'aide ?

(Nombre de téléchargements - 0)

Catégorie :

Pour des questions et des demandes, contactez notre service d’assistance E-mail : info@chatpfe.com

Table des matières

Liste des tableaux
liste des figures
Chapitre 1 Introduction générale
1.1 Introduction
1.2 Concepts fondamentaux en optique hydrologique
1.2.1 Le rayonnement solaire et rayonnement photosynthétiquement actif (PAR)
1.2.2 Les propriétés optiques apparentes et inhérentes (AOP etIOP)
1.2.3 Les composantes optiquement actives
1.3 Sujets spécifiques d’optique hydrologique
1.3.1 La transmission de la lumière sous l’eau
1.3.2 La couleur de l’eau (le rayonnement qui sort de l’eau)
1.3.3 Les modèles de transfert radiatif.
1.4 Description des sites d’étude
1.4.1 Les mares thermokarstiques
1.4.2 Le lac Saint-Charles
1.4.3 Le lac Saint-Augustin
1.5 Organisation de la thèse
Chapitre 2 Optical diversity of thaw ponds in discontinuous permafrost: a model system for water color analysis
2.1 Résumé
2.2 Abstract
2.3 Introduction
2.4 Materials and methods
2.4.1 Study site and field sampling
2.4.2 Limnological variables
2.4.3 Apparent optical properties (AOPs)
2.4.3.1 Within water AOPs
2.4.3.2 Above-water AOPs
2.4.3.3 CIE L*a*b* color coordinates
2.4.4 Inherent optical properties (IOPs)
2.4.4.1 Absorption coefficient of colored dissolved organic matter
2.4.4.2 Absorption coefficients of suspended particulate matter
2.4.4.3 AC-S measurements
2.4.4.4 Absorption coefficient of fine particles
2.4.4.5 Validation of AC-S related measurements
2.4.5 Remote sensing analysis
2.4.6 Statistical analyses
2.5 Results
2.5.1 Ambient conditions
2.5.2 AOPs
2.5.3 IOPs
2.5.3.1 Absorption coefficient of colored dissolved organic matter
2.5.3.2 Absorption coefficient of non-algal particles
2.5.3.3 Absorption coefficient of algal particles
2.5.3.4 Absorption coefficient of fine particles
2.5.3.5 Total absorption
2.5.3.6 Scattering
2.5.4 Remote sensing analysis
2.6 Discussion
2.6.1 Limnological conditions
2.6.2 Above-water AOPs and color coordinates
2.6.3 IOPs
2.6.3.1 Absorption coefficient of colored dissolved organic matter
2.6.3.2 Absorption coefficient of non-algal particles
2.6.3.3 Absorption coefficient of algal particles
2.6.3.4 Absorption coefficient of fine particles
2.6.3.5 Total absorption
2.6.3.6 Scattering
2.6.4 Remote sensing analysis
2.7 Conclusions
2.8 Acknowledgements
Chapitre 3 Light attenuation in a drinking water reservoir: photon budget estimation and the importance of abiotic factors
3.1 Résumé
3.2 Abstract
3.3 Introduction
3.4 Methods
3.4.1 Study site and limnological conditions
3.4.2 Apparent optical properties (AOPs)
3.4.3 Laboratory analyses of limnological variables
3.4.4 Inherent optical properties (IOPs)
3.4.4.1 Absorption coefficient of colored dissolved organic matter
3.4.4.2 Absorption coefficients of suspended particulate matter
3.4.4.3 AC-S measurements
3.4.5 Photon budget calculation
3.5 Results
3.5.1 Limnological variables
3.5.2 AOPs
3.5.3 IOPs
3.5.3.1 Absorption coefficients of colored dissolved organic matter
3.5.3.2 Absorption coefficients of suspended particulate matter
3.5.3.3 Scattering coefficients
3.5.4 Photon budget calculations
3.6 Discussion
3.6.1 IOPs and specific characteristics of optically active components
3.6.1.1 Colored dissolved organic matter
3.6.1.2 Non-algal particles
3.6.1.3 Algal particles
3.6.1.4 Fine particles
3.6.1.5 Scattering coefficients
3.6.2 Photon budget calculation
3.6.2.1 Vertical attenuation of PAR
3.6.2.2 Contributions to PAR attenuation
3.6.2.3 Seasonal dynamics of PAR attenuation
3.6.2.4 Attenuation by water
3.6.2.5 Application of the photon budget approach
3.6.2.6 Estimation of average cosine and back scattering ratio
3.7 Conclusions
3.8 Summary of the notation used in this article
Chapitre 4 Optical closure in a shallow urban lake: steps toward modeling of remote sensing reflectance in optically complex inland waters
4.1 Résumé
4.2 Abstract
4.3 Introduction
4.4 Materials and Methods
4.4.1 Study site and field sampling
4.4.2 Apparent optical properties (AOPs)
4.4.3 Limnological variables
4.4.4 Inherent optical properties (IOPs)
4.4.4.1 Absorption coefficient of colored dissolved organic matter
4.4.4.2 Absorption coefficients of suspended particulate matter
4.4.4.3 AC-S measurements
4.4.5 Radiative transfer modeling (RTM)
4.5 Results
4.5.1 Ambient conditions and IOPs
4.5.2 Optical closure
4.6 Discussion
4.6.1 Limnological conditions
4.6.2 IOPs for optically active components
4.6.3 Optical closure
4.6.4 Uncertainties in IOP measurements
4.6.4.1 Near-infrared absorption
4.6.4.2 Null point correction of quantitative filter technique (QFT)
4.6.4.3 The path length amplification factor
4.6.4.4 The absorption coefficient of fine particles
4.6.4.5 Future improvement opportunities of particulate absorption easurements
4.6.5 Importance of fluorescence estimations on the RTM
4.7 Conclusions
Chapitre 5 Conclusion générale
Références bibliographiques
Annexe 1 Error analyses for optical measurements
Al.l Introduction
A1.2 Methods
Al.2.1 Varian Cary 100 bench-top spectrophotometer
Al.2.2 WET Labs AC-S in situ spectrophotometer
Al.2.3 Satlantic radiometer system
Al.3 Results and discussion
AI.3.1 Varian Cary 100 bench-top spectrophotometer
Al.3.2 WET Labs AC-S in situ spectrophotometer
Al.3.3 Satlantic radiometer system
Annexe 2 Particle size distribution analysis of thaw ponds
A2.1 Introduction
A2.2 Methods
A2.3 Results and discussion
A2.4 References
Annexe 3 The pathlength amplification factor (beta factor) for the quantitative filter technique
A3.1 Introduction
A3.2 Methods
A3.2.1 The quantitative filter technique
A3.2.2 WET Labs AC-S analysis
A3.3 Results and discussion
A3.4 References

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *