Le besoin d’un protecteur auditif (intelligent)

Besoin d'aide ?

(Nombre de téléchargements - 0)

Catégorie :

Pour des questions et des demandes, contactez notre service d’assistance E-mail : info@chatpfe.com

Table des matières

ABSTRACT
REMERCIEMENTS
LISTE DES TABLEAUX
LISTE DES FIGURES
LISTE DES ABRÉVIATIONS ET SIGLES
INTRODUCTION
ARTICLE 1 PROBLÉMATIQUES ASSOCIÉES AU DÉVELOPPEMENT D’UN BOUCHON D’OREILLE<< INTELLIGENT>> 
1.1 Introduction
1.1.1 Le bruit industriel : un fléau mondial
1.1.2 La protection individuelle, seule solution économique à court terme
1.1.3 Les problèmes des protections individuelles disponibles sur le marché
1.1.4 Le besoin d’un protecteur auditif<< intelligent>>
1.2 Problématiques associées au développement d’un bouchon d’oreille << intelligent >>
1.2.1 Problématique << Santé et sécurité au travail >>
1.2.1.1 Importance du port continu d’un protecteur auditif
1.2.1.2 Inadéquation entre les valeurs théoriques et les valeurs réelles<< terrain>> d’atténuation
1.2.2 Problématique technique
1.2.2.1 Un bouchon d’oreille adapté à la morphologie individuelle et biocompatible
1.2.2.2 Adaptation du bouchon à l’exposition du travailleur
1.2.2.3 Un système et une méthode de mesure des performances acoustiques
1.2.3 Problématique scientifique
1.2.3.1 Identification des paramètres clefs déterminants les performances d’un protecteur auditif intra-auriculaire
1.2.3.2 Systèmes de filtrage sélectifs adaptés au bruit en milieu industriel
1.2.3.3 Méthode de mesure objective de l’atténuation effective d’un protecteur auditif intra auriculaire
1.3 État du développement
1.3.1 Synthèse des développements prévus
1.3.2 État d’avancement
1.4 Conclusion
ARTICLE 2 THE OBJECTIVE MEASUREMENT OF INDIVIDUAL EARPLUG FIELD PERFORMANCE
2.1 Introduction
2.2 The Deviee Used: An Instrumented Expandable Custom Earplug
2.3 Formulation of the proposed objective measurement of individual
earplug field performance
2.3.1 Relationship between Noise Reduction (NR), Insertion Loss (IL) and Real Ear Attenuation at Threshold (REAT)
2.3.2 Measurement of Noise Reduction and its associated corrections
2.3.2.1 Measurement of the field Noise Reduction
2.3.2.2 Measurement of the Noise Reduction field correction
2.3.2.3 Measurement of Noise Reduction laboratory correction
2.3.3 Estimation of the equivalent binaural NR
2.3.4 Compensation Calculation
2.3.5 Predicted Persona! Attenuation Rating
2.3.6 Performance Tests
2.3.6.1 Acoustic Seal Test
2.3.6.2 Rating Test
2.3.6.3 Protection Outcome Test
2.4 Experimental Validation of the Proposed Approach
2.4.1 Validation of the measurement deviee
2.4.1.1 Experimental setup
2.4.1.2 Experimental results
2.4.2 Validation of the prediction method
2.4.2.1 Detailed computation on the two datasets
2.4.2.2 Predicted vs. Reported Attenuation
2.4.3 Comparison with existing field measurement techniques
2.5 Uncertainty associated with the proposed measurement approach
2.5.1 Classification and Representation of uncertainty components for the PPAR
2.5.1.1 Uncertainty components associated with the corrected Noise Reduction: UNR
2.5.1.2 Uncertainty components associated with the Compensation factor: UcOMP
2.5.2 Evaluation of PPAR uncertainty components
2.5.2.1 Evaluation of the corrected Noise Reduction uncertainty component: UNR
2.5.2.2 Evaluation of the compensation uncertainty component ucoMP
2.5.3  Combination of PPAR uncertainty components
2.5.3.1 Discussion on the uncertainty associated with the proposed approach UAPP
2.5.3.2 Discussion on the overall PPAR uncertainty
2.5.4 Calculation of expanded uncertainty and coverage factor
2.5.4.1 General calculation
2.5.4.2 Specifie calculation
2.5.5 Intra-subject earplug « real-world » field performance variability
2.5.5.1 Measurement Variability
2.5.5.2 Fitting Variability
2.5.5.3 Retention Variability
2.5.5.4 Aging Variability
2.6 Use of the proposed approach for other types of earplugs
2.6.1 Experimental Setup
2.6.2 Experimental Insertion Loss IL vs. Noise Reduction NR*
2.7 Conclusions
2.a Estimation of the Trans fer Function H3 ( w) .
2.b Numerical Tables . . . . . . . . . .
2.b.a Numerical Tables from section 2.3.2 . .
2.b.b Numerical Tables from section 2.4.2 ..
2.c Statistical Graphs from section 2.4.2.1.5
2.d  Statistical graphs from Section 2.4.2.2 .
ARTICLE 3 PREDICTION OF THE ATTENUATION OF A FILTERED CUSTOM
3.1 Introduction
3.2 An empirical damper contribution model
3.2.1 Justification, concept and hypothesis of the proposed model
3.2.2 Formulation of the filtered earplug attenuation prediction
3.2.3 Measurement of the averaged damper attenuation contribution
3.2.3.1 ATT Damper
3.2.3.2 Measurement Methodology
3.2.4 Analysis of the data collected
3.2.4.1 Evaluation of the validity of Hl and H2 hypothesis
3.2.4.2 On Acoustical Test Fixture (ATF)
3.2.5 On Human Subjects
3.3 Damper attenuation contribution
3.3.1 Uncertainty associated with the filtered earplug attenuation prediction
3.3.2 Evaluation of the uncertainty associated with the proposed approach
3.3.2.1 Uncertainty associated with the damper acoustical resistance variability
3.3.2.2 IL measurement on several earplug configurations
3.3.2.3 Relationship between acoustical resistance and attenuation
3.3.3 Variability of the damper attenuation
3.4 Analysis of the uncertainty sources
3.4.1 Experimental Validation of the Prediction Model
3.4.2 Experimental process
3.4.3 Experimental Data Reported
3.5 Validation criteria
3.6 Conclusion
3.a Tables from section 3.2.3
3.b Tables from section 3.2.3.2, « per test trial » analysis
3.c Tables from section 3.2.3.2, « per subject average » analysis
3.d Tables from section 3.3.1
3.e Tables for section 3.4.2
CONCLUSION

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *