Estimation de canal multi-trajets dans un contexte de modulation OFDM

Besoin d'aide ?

(Nombre de tรฉlรฉchargements - 4)

Catรฉgorieย :

Pour des questions et des demandes, contactez notre service dโ€™assistance E-mail : info@chatpfe.com

Table des matiรจres

Introduction
r.1 Contexte et modรจle
r.1.1 Le canal de transmission multi-trajet
r.1.2 Transmission dโ€™un signal OFDM
r.2 Techniques dโ€™estimation : รฉtat de lโ€™art
r.2.1 Les pilotes
r.2.2 Les critรจres LS et MMSE
r.2.3 Techniques dโ€™interpolation
r.2.4 Autres mรฉthodes dโ€™estimation de canal
r.3 Estimation ACA-LMMSE
r.3.1 Principe du ACA-LMMSE
r.3.2 Complexitรฉ de ACA-LMMSE
r.3.3 Choix des paramรจtres de G
r.3.4 Rรฉsultats de simulations
r.3.5 Conclusion et perspectives
r.4 Estimation conjointe du RSB et du canal
r.4.1 Prรฉsentation de lโ€™algorithme
r.4.2 Convergence de lโ€™algorithme
r.4.3 Rรฉsultats de simulations
r.4.4 Conclusion et perspectives
r.5 ร‰tude des interpolations sur les performances de lโ€™estimation dโ€™un canal de Rayleigh
r.5.1 Modรจle
r.5.2 Statistique des erreurs dโ€™interpolation
r.5.3 Considรฉrations gรฉomรฉtriques
r.5.4 Rรฉsultats de simulations
r.5.5 Conclusion et perspectives
r.6 Application de la diversitรฉ de dรฉlai cyclique ร  un SFN
r.6.1 Modรจle
r.6.2 Diversitรฉ de dรฉlai cyclique
r.6.3 Rรฉsultat de simulation
Conclusion
Abstract
Introduction
1 System, Models, Basic Elements
1.1 Introduction
1.2 The Transmission Channel
1.2.1 The Multipath Channel
1.2.2 Channel Models
1.2.3 Channel Statistics
1.3 The OFDM Signal and the Transmission Chain
1.3.1 History
1.3.2 Modelisation of the OFDM Signal
1.3.3 Transmission of the OFDM Signal
1.3.4 Discrete Model of the OFDM Transmission
1.3.5 Frequency Covariance and Correlation Matrix
1.4 Simulation of the Transmission Channel
1.5 Conclusion
2 Channel Estimation Methods
2.1 Introduction
2.1.1 Time or Frequency Domain Estimation
2.1.2 Blind Estimation
2.1.3 Transmission Methods with a Known Channel State Information
2.1.4 Semi-blind Estimation
2.2 The Pilots in the OFDM Frame
2.3 LS and MMSE Criteria
2.3.1 Principle of LS Estimation
2.3.2 Principle of Linear-MMSE Estimation
2.4 Pilot-Aided Estimation Methods
2.4.1 Methods with Knowledge of Some Properties of the Channel
2.4.2 Methods without Knowledge of the Channel Properties
2.4.3 Iterative and Recursive Channel Estimation
2.5 Conclusion
3 Artificial Channel Aided-LMMSE Channel Estimation
3.1 Introduction
3.2 Description of the Method
3.2.1 Principle of the Method
3.2.2 ACA-LMMSE channel Estimation
3.2.3 Characteristics of ACA-LMMSE
3.2.4 Complexity Comparison with Standard LMMSE
3.3 Choice of Filter G Parameters
3.3.1 Discussion on the Choice of the Parameters
3.3.2 Discussion on the Choice of the Maximum Delay ฯ„(G) max
3.3.3 Discussion on the Choice of the Number of Paths of the Artificial Channel
3.3.4 Discussion on the Choice of the Multipath Intensity Profile
3.4 Simulations Results
3.4.1 Mean Square Error of ACA-LMMSE
3.4.2 Comparison with other methods
3.4.3 Suitability of ACA-LMMSE in general WSSUS Channel Models
3.4.4 Reduction of Implementation Complexity
3.5 Application to Intersymbol Interference Cancellation
3.5.1 Model of ISI Channel
3.5.2 RISIC Algorithm
3.5.3 ACA-LMMSE with RISIC Algorithm
3.5.4 Simulations Results for RISIC combined with ACA-LMMSE
3.6 Conclusion
4 MMSE-based Joint Iterative SNR and Channel Estimation
4.1 Introduction
4.2 SNR Estimation : State of the Art
4.3 First Approach of the Method in a Simple Context
4.3.1 System Model
4.3.2 Proposed Algorithm – Theoretical Case
4.3.3 Simulations Results – Theoretical Approach
4.4 Realistic Approach of the Joint estimation
4.4.1 Proposed Algorithm – Realistic Case
4.4.2 Convergence of the Algorithm
4.4.3 Simulations Results – Realistic Approach
4.5 Application of the Algorithm to Spectrum Sensing
4.5.1 Spectrum Sensing
4.5.2 Proposed Detector
4.5.3 Analytical Expressions of the Detection and False Alarm Probabilities
4.5.4 Simulations Results
4.6 Conclusion
5 Study of the Interpolation on the Rayleigh Channel Estimation Performance
5.1 Introduction
5.2 System Model
5.3 Statistics of the Interpolation Errors
5.3.1 Nearest Neighbor Interpolation
5.3.2 Linear Interpolation
5.3.3 Statistics of the Interpolated Noise
5.4 Mean Square Error of the Estimations Performed with Interpolation
5.5 Geometrical Considerations
5.5.1 System Model
5.5.2 BPSK Constellation
5.5.3 4-QAM Constellation
5.5.4 Analytical Expression of the BER Floor
5.6 Simulation Results
5.6.1 Simulations Parameters
5.6.2 Analytical BER Floor
5.7 Conclusion
6 Application of Cyclic Delay Diversity to a Single Frequency Network
6.1 Introduction
6.2 Different Kinds of Diversity
6.2.1 Time Diversity
6.2.2 Spatial Diversity
6.2.3 Polarization Diversity
6.2.4 Frequency Diversity
6.3 Application of the Cyclic Delay Diversity in a SFN
6.3.1 Model Description
6.3.2 Simulation Parameters
6.4 Cyclic Delay Diversity
6.4.1 Principle of CDD
6.4.2 Generalization to a Multitransmitter Network
6.5 Simulations Results
6.5.1 Realistic DRM+ Cell
6.5.2 Measurement of the Fading
6.5.3 Bit Error Rate Performance
6.6 Conclusion
General Conclusion
A Appendix of the Chapter 1
A.1 Expression of the Channel Covariance
A.2 Proof of the Diagonalization of a Circulant Matrix in the Fourier Basis
B Appendix of the Chapter 4
B.1 Proof of the Convergence to Zero of the Algorithm when Using the Matrix LSH
B.2 Proof of the Convergence to Zero of the Algorithm under the Hypothesis H0
C Appendix of the Chapter 5
C.1 Error of the Linear Interpolation
List of Figures
List of Tables
List of Algorithms

Laisser un commentaire

Votre adresse e-mail ne sera pas publiรฉe. Les champs obligatoires sont indiquรฉs avec *

Comments (1)