Les fondements de la cosmologie moderne
Lโexpansion de lโUnivers
Le diagramme de Hubble
Lโobservation fondamentale ร la base du modรจle du big bang est sans conteste celle faite par Edwin Hubble de la rรฉcession des galaxies. Les galaxies prรฉsentent un dรฉcalage de leur spectre vers le rouge systรฉmatique (Slipher, 1918) que lโon peut interprรฉter comme un effet Doppler. Le dรฉcalage vers le rouge est dรฉfini par la variation relative des longueurs dโonde :
z = ฮปo โ ฮปe / ฮปe
oรน ฮปe est la longueur dโonde dโun photon au moment de lโรฉmission et ฮปo est la longueur dโonde mesurรฉe par lโobservateur. Un dรฉcalage vers le rouge z << 1 peut รชtre interprรฉtรฉ comme un effet Doppler dรป ร une source sโรฉloignant de lโobservateur avec vitesse v = cz. Hubble a observรฉ que la vitesse de rรฉcession v ainsi mesurรฉe est proportionnelle ร la distance d de la galaxie : v = Hโฆd
Cette observation a รฉtรฉ rendue possible grรขce ร une nouvelle technique de mesure des distances extra-galactiques basรฉe sur les cรฉphรฉides. Ces objets prรฉsentent en effet une oscillation de leur luminositรฉ absolue avec une pรฉriode dรฉpendant de leur luminositรฉ maximale. La forme en dent de scie de la courbe de lumiรจre les rend facilement dรฉtectables et diffรฉrentiables des autres objets variables. En dรฉterminant la relation pรฉriode-luminositรฉ sur des cรฉphรฉides proches, dont la distance peut รชtre mesurรฉe par un autre moyen (parallaxe), la distance des galaxies proches (jusquโร โผ 30 Mpc avec le Hubble Space Telescope) devient accessible par la mesure de la pรฉriode et de la luminositรฉ apparente. Lโavantage des cรฉphรฉides est quโelles sont nombreuses (on peut en mesurer plusieurs par galaxie), stables (on peut observer les mรชmes cรฉphรฉides ร plusieurs reprises), et lโรฉcart ร la relation pรฉriode-luminositรฉ est trรจs faible. Enfin, la raison de la variation de la luminositรฉ est comprise et modรฉlisรฉe. Toutefois, il nโest pas possible de dรฉtecter les cรฉphรฉides individuelles dans les galaxies รฉloignรฉes de plus de 30 Mpc (problรจme de confusion et de luminositรฉ trop faible) et ร ces distances, proches dโun point de vue cosmologique, les vitesses locales des galaxies (qui modifient le dรฉcalage vers le rouge dโorigine cosmologique) ainsi que les effets dโabsorption par la poussiรจre galactique entourant les cรฉphรฉides ne sont pas nรฉgligeables et doivent รชtre corrigรฉes. Une mesure prรฉcise de Hโฆ nรฉcessite donc dโobtenir dโautres chandelles standard, autorisant des mesures de distance jusquโร quelques centaines de Mpc. Un exemple, dont nous reparlerons plus loin , est celui des supernovae de type Ia : on peut vรฉrifier sur des galaxies proches, pour lesquelles la distance peut รชtre mesurรฉe grรขce aux cรฉphรฉides, que les supernovae de type Ia sont des chandelles standard, cโest-ร -dire que la luminositรฉ absolue au maximum de lโรฉmission est identique pour toutes les supernovae (aprรจs une correction donnรฉe par une relation entre temps de dรฉcroissance et luminositรฉ absolue). Elles ont lโavantage incomparable dโรชtre observables ร des distances de plus de 400 Mpc (leur luminositรฉ apparente atteint celle de la galaxie hรดte), et sont donc trรจs peu sensibles aux vitesses locales.
Le diagramme de Hubble obtenu rรฉcemment (Freedman et al., 2001) par le Key Project du tรฉlescope spatial Hubble est reprรฉsentรฉ sur la figure 1.1. Diffรฉrents types de sources et mรฉthodes de mesure de distance ont รฉtรฉ utilisรฉes (Supernovae Ia, Cรฉphรฉides, relation de Tully-Fisher entre autres, voir (Coles et Lucchin, 2002) pp. 79-83 par exemple). La valeur de la constante de Hubble mesurรฉe aujourdโhui est :
Hโฆ = 72 ยฑ 8 km/s/Mpc
La constante de Hubble a la dimension de lโinverse dโun temps. Lโรฉchelle de temps caractรฉristique associรฉe, tH = Hโ1โฆ , appelรฉe le temps de Hubble, donne un ordre de grandeur de lโรขge de lโUnivers. En 1929, Hubble avait mesurรฉ Hโฆ ‘ 500 km/s/Mpc, donnant un รขge de lโUnivers entre un et deux milliards dโannรฉes, plus petit que lโรขge de la Terre… La mesure actuelle de Hโฆ donne un รขge plus raisonnable dโenviron 13 milliards dโannรฉes.
Lโinterprรฉtation en terme dโeffet Doppler du dรฉcalage vers le rouge devient problรฉmatique lorsque lโon mesure z ‘ 1. La vitesse de rรฉcession correspondante est en effet de lโordre ou supรฉrieure ร la vitesse de la lumiรจre. On pourrait รชtre tentรฉ dโutiliser la formule obtenue par la relativitรฉ restreinte de lโeffet Doppler, mais celle-ci nโest en fait pas utilisable, car elle nโest valable que dans un espace-temps plat de Minkowski, ce qui, nous allons le voir, nโest pas le cas de notre Univers. Cโest dans le cadre de la relativitรฉ gรฉnรฉrale que nous allons retrouver la loi de Hubble, avec une interprรฉtation trรจs diffรฉrente dโun effet Doppler. Nous allons voir que cโest lโespace lui-mรชme qui est en expansion. Le dรฉcalage vers le rouge correspond en fait ร un รฉtirement de la longueur dโonde du photon au cours de son trajet entre lโรฉmission et la rรฉception. Il est donc dโautant plus important que le trajet a durรฉ longtemps et cโest en cela quโil constitue une mesure de distance.
Toutefois, lโeffet Doppler existe bien et se superpose au flot de Hubble . Une grande difficultรฉ de mesurer la constante de Hubble provient justement de la confusion possible entre les deux effets. La vitesse particuliรจre de la source, due ร lโattraction gravitationnelle par dโautres galaxies ou amas de galaxies, introduit, au moment de lโรฉmission, un dรฉcalage Doppler qui sโajoute ร lโeffet dรป ร lโexpansion. Cette confusion est particuliรจrement importante pour les galaxies proches, car le flot de Hubble y est du mรชme ordre que lโeffet Doppler. Ce problรจme est ร lโorigine de lโerreur dans la mesure faite par Hubble (ses galaxies les plus lointaines รฉtaient ร quelques Mpc).
Le principe cosmologique
La cosmologie observationnelle repose sur une hypothรจse simplificatrice fondamentale : lโUnivers est isotrope, cโest-ร -dire que ses propriรฉtรฉs sont statistiquement identiques quelle que soit la direction dโobservation. Si par ailleurs, on accepte, suivant en cela Nicolas Copernic , que notre position nโest pas privilรฉgiรฉe dans lโUnivers, et donc quโun observateur sur une autre galaxie peut faire la mรชme hypothรจse dโisotropie de lโUnivers, alors lโUnivers doit รชtre homogรจne. Cโest clairement faux ร lโรฉchelle du systรจme solaire, et mรชme de notre galaxie. En fait, cette hypothรจse nโest valable quโaux trรจs grandes รฉchelles, de lโordre du Gpc.
Une preuve observationnelle forte de la validitรฉ de lโhypothรจse dโisotropie est apportรฉe par le fond diffus cosmologique : les variations de tempรฉrature observรฉes en fonction de la direction ne sont en effet que de quelques 10โปโต . Les รฉchelles sondรฉes par le CMB sont bien plus grandes que celles sondรฉes par les sondages de galaxies (de lโordre de 6 Gpc). Il est donc lรฉgitime de supposer que lโUnivers รฉtait dans le passรฉ extrรชmement homogรจne (ร mieux que 0,1%), et que cโest la croissance des structures initiales par effondrement gravitationnel qui est ร lโorigine des inhomogรฉnรฉitรฉs observรฉes aujourdโhui.
Le principe cosmologique, par son haut niveau de symรฉtrie, contraint trรจs fortement les thรฉories possibles, comme nous allons le voir dans la prochaine section. Mentionnons lโexistence dโun principe cosmologique fort qui stipule que lโUnivers doit apparaรฎtre identique quels que soit la direction et le point dโobservation, mais aussi lโinstant dโobservation. Cette version va plus loin que le principe cosmologique standard, en disant que, de mรชme notre position nโa rien de particulier, lโinstant actuel nโa lui non plus rien de particulier. Ce principe fort est ร la base du modรจle de lโรฉtat stationnaire dรฉveloppรฉ par Fred Hoyle, dans lequel il nโy a pas de big bang. Ce dernier modรจle รฉtant largement contredit par les observations actuelles, nous utiliserons dans la suite le principe cosmologique standard, qui conduit, lui, ร la prรฉdiction du CMB.
Notions de relativitรฉ gรฉnรฉrale
La seule interaction fondamentale capable dโagir sur les trรจs grandes รฉchelles spatiales รฉtudiรฉes par la cosmologie est la gravitation. Les interactions nuclรฉaires forte et faible agissent uniquement ร courte distance, et lโinteraction รฉlectromagnรฉtique est nรฉgligeable car la matiรจre est globalement neutre.
La relativitรฉ gรฉnรฉrale est une thรฉorie gรฉomรฉtrique de la gravitation basรฉe sur le principe dโรฉquivalence. La thรฉorie newtonienne de la gravitation fait usage de deux types distincts de masse : la masse inertielle, qui caractรฉrise la difficultรฉ ร modifier le mouvement dโun corps, intervient dans lโรฉquation F = mIa et la masse gravitationnelle entre dans la dรฉfinition de lโinteraction gravitationnelle entre deux corps massifs Fg = Gm (1) G m (2) G /r2 12. A priori, il nโy a pas de raison que mI et mG soient รฉgales, et pourtant, on ne mesure, expรฉrimentalement, aucune diffรฉrence entre elles (par exemple, mI/mG(Cu) โ mI/mG(Be) = (0, 1 ยฑ 1, 0) ร 10โปยนยน (Adelberger et al., 1990); pour une revue plus rรฉcente (Adelberger et al., 1998)).
|
Table des matiรจres
Introduction
1. La cosmologie et le fond diffus micro-onde
1.1 Les fondements de la cosmologie moderne
1.1.1 Lโexpansion de lโUnivers
1.1.2 Le principe cosmologique
1.1.3 Notions de relativitรฉ gรฉnรฉrale
1.1.4 La mรฉtrique de Robertson-Walker
1.1.5 Les รฉquations de Friedmann-Lemaรฎtre
1.1.6 Oรน lโon retrouve la loi de Hubble
1.1.7 Les paramรจtres cosmologiques
1.1.8 Lโhistoire thermique de lโUnivers
1.1.9 Le scรฉnario du big bang
1.2 Lโinflation
1.2.1 Les motivations de lโinflation
1.2.2 Le scรฉnario
1.2.3 Le formalisme et les paramรจtres de roulement lent
1.2.4 Fluctuations et inflation
1.3 Le fond diffus cosmologique
1.3.1 Le spectre des fluctuations
1.3.2 La physique du CMB
1.3.3 Influence des paramรจtres cosmologiques
1.4 La polarisation du fond diffus cosmologique
1.4.1 La gรฉnรฉration de la polarisation
1.4.2 Description de la polarisation
1.4.3 Intรฉrรชt cosmologique de la polarisation
1.5 Les expรฉriences futures
2. Les expรฉriences Planck et Archeops
2.1 Le satellite Planck
2.1.1 Les objectifs de la mission Planck
2.1.2 Description du satellite
2.1.3 Lโinstrument basse frรฉquence (LFI)
2.1.4 Lโinstrument haute frรฉquence (HFI)
2.1.5 La stratรฉgie de balayage
2.2 Archeops : une expรฉrience ballon pour prรฉparer Planck
2.2.1 Description de lโinstrument
2.2.2 La stratรฉgie de balayage
2.2.3 Le vol scientifique du 7 fรฉvrier 2002
3. Lโรฉtalonnage de lโinstrument HFI de Planck
3.1 Les paramรจtres de lโรฉtalonnage
3.1.1 Les lobes principaux
3.1.2 La rรฉponse spectrale
3.1.3 La rรฉponse temporelle
3.1.4 La polarisation
3.1.5 La rรฉponse absolue
3.1.6 Caractรฉrisation des dรฉtecteurs
3.1.7 Niveau de bruit
3.1.8 La diaphonie
3.2 La cuve Saturne et le systรจme optique
3.3 La sphรจre intรฉgrante
3.3.1 Le banc optique
3.3.2 Les surfaces testรฉes et les rรฉsultats
3.4 Le polariseur
3.4.1 Introduction
3.4.2 Caractรฉristiques des diffรฉrents polariseurs
3.4.3 Montage expรฉrimental
3.4.4 Mesures des polariseurs
3.5 Effet dโun faisceau ouvert sur la polarisation
3.5.1 Transmission ร travers deux polariseurs
3.5.2 Polariseur et analyseur non parallรจles
3.5.3 Faisceau incident non parallรจle
4. Quelques effets systรฉmatiques dans la mesure de la polarisation
4.1 La mesure de la polarisation
4.1.1 Cas de la tempรฉrature
4.1.2 Cas de la polarisation
4.1.3 Les effets systรฉmatiques
4.2 Mรฉthode pour lโรฉtude
4.2.1 Intรฉrรชt de lโapproximation plane
4.2.2 Description de la mรฉthode
4.2.3 Les lobes polarisรฉs dans lโapproximation plane
4.3 Influence des lobes sur la mesure des spectres
4.3.1 Erreur dโintercalibration
4.3.2 Erreur de reconstruction du plan focal
4.3.3 Erreur de pointage
4.3.4 Erreur de constante de temps
4.3.5 Effet de lobes asymรฉtriques
4.3.6 Effet de lobes rรฉalistes
Conclusion