La structure cristalline de la glace
L’eau, dont la formule chimique est H2O, existe sous trois formes (vapeur, liquide et solide) joue un rôle essentiel dans l’équilibre de notre planète. La structure de la molécule d’eau est l’une des plus simples de la chimie, mais les caractéristiques physiques de l’eau liquide et des différentes glaces sont complexes et singulières. Selon les conditions de température et de pression auxquelles l’eau est soumise, il existe un grand nombre de formes de glace dont on peut distinguer dix formes cristallines différentes et au moins deux formes amorphes [3]. Cependant, la plupart de ces structures ne sont stables que sous très forte pression (> 100 ou 200 MPa) ou à très basse température. Dans les conditions de pression atmosphérique, seules deux formes cristallines, cubiques (Ic) et hexagonale (Ih) peuvent exister. La glace cubique est une forme métastable sous des conditions atmosphériques. Cette forme n’a été́ observée qu’expérimentalement et peut être obtenue par condensation de vapeur d’eau entre 135 K et 195 K environ [4].
Pour la glace Ih, le plan de base est le plan de plus forte densité d’atomes d’oxygène; son axe de symétrie, perpendiculaire à ce plan, est appelé axe C [5] (Figure 2.1).
Selon la texture de la glace Ih, deux types de glace ont été signalés, granulaire et colonnaire [6] chacun divisé en quelques subdivisions. Ce terme (texture), représente les orientations d’axe C (axe qui définit l’orientation de la maille hexagonale de l’arrangement monocristallin de la glace) à l’intérieur des cristaux de la glace. Les axes C dans la glace granulaire sont orientés de façon aléatoire (Figure 2.2), ce qui donne lieu à un comportement mécanique isotrope, indépendamment de l’anisotropie du monocristal de la glace.
La glace granulaire se retrouve dans les couvertures de glace des rivières, des lacs ou des océans, et généralement dans les parties supérieures des glaciers. Les grains peuvent être arrondis ou anguleux (Figure 2.2).
Pour la glace colonnaire, les grains croissent dans une forme colonnaire, donnant ainsi le nom à ce type de glace. Trois types majeurs sont distingués : S1, S2 et S3. Chaque type de glace colonnaire se distingue par l’orientation des colonnes par rapport à l’axe C (Figure 2.3). Pour la glace de type S1, l’orientation cristallographique de l’axe C est parallèle à la direction colonnaire. L’orientation cristallographique de l’axe C dans la glace de type S2 est perpendiculaire à la direction des colonnes. Enfin, pour la glace de type S3, l’axe C est orienté avec un certain angle dans le plan perpendiculaire à l’axe des colonnes. Donc les glaces SI et S2 peuvent être considérées comme un matériau isotrope transverse, tandis que la glace S3 appartient à la famille des matériaux orthotropes [7].
Verglas
Le verglas est un dépôt de glace transparente, lisse et sans bulles d’air. Il se forme à partir de précipitations verglaçantes, de pluie ou de bruine, ou encore des nuages avec une grande teneur en eau liquide et des gouttelettes de grande taille [8]. Il se forme lorsque les grosses gouttelettes de l’eau ont suffisamment de temps pour s’étaler sur une surface froide avant de geler. Normalement, la température de l’air (Ta) et la température de surface du dépôt (Ts) sont supérieures à -6 °C et 0 °C, respectivement. Il est dans la famille de la glace colonnaire, de type S2 dans des conditions très humide, et de type S1 dans la transition du régime humide au régime sec. Le verglas a une masse volumique très proche de la glace pure, soit environ 917 kg/m3 [8].
Neige sèche
La neige sèche s’accumule à des températures inférieures à zéro, mais uniquement lorsque la vitesse du vent est très faible. La masse volumique de la neige sèche est, en général, très faible et ne dépasse pas 100 kg/ m3 [8].
Neige mouillée
La neige mouillée est généralement définie comme celle qui tombe à des températures égales ou supérieures à -5°C, avec une masse volumique de 300-800 kg/m3. Ce type de neige est assez collant et s’accumule rapidement [8].
Nuages givrants
Normalement, un nuage givrant ne se forme que dans des nuages constitués de gouttelettes surfondues, qui sont des gouttelettes qui restent liquides à une température inférieure à 0 °C. Les nuages givrants, selon leur teneur en eau, la température et la vitesse de vent, ainsi que la distribution de la taille des gouttelettes dans le nuage, produisent du givre dur ou du givre mou. L’intensité et la durée de givrage dans les nuages dépend du flux de l’eau liquide dans le nuage, qui dépend encore une fois de nombreux paramètres tels que la température, la vitesse du vent, la stabilité et la profondeur de nuage, la hauteur au-dessus de la base des nuages et de la distance de la côte [8].
Givre dur
Le givre dur pousse dans une structure en couche de glace claire et mélangée avec des bulles d’air. Le dépôt de ce type de glace est opaque et transparent avec une structure colonnaire et une masse volumique comprise entre 700 et 900 kg/m3. Lorsque la température du dépôt diminue, l’orientation de l’axe C dans la direction colonnaire préférentielle devient orientée aléatoirement (givre mou) [6, 8].
Givre mou
Le givre mou a une structure granulaire qui dépend de la vitesse de congélation des gouttes individuelles, chaque goutte gelant complètement avant qu’une autre ne touche la surface. Le givre mou se développe dans une structure blanche et opaque avec de nombreuses bulles d’air. Sa masse volumique est basse, aux environs de 600 kg/m3 [8]. La Figure 2.4 montre les limites approximatives de la transition du givre mou, du givre dur et du verglas.
Le givrage atmosphérique
Les types les plus fréquents de la glace atmosphérique qui se dépose sur les lignes de transport d’énergie électrique sont des précipitations givrantes ou des nuages givrants, chaque type ayant une texture différente. Selon des températures de dépôt de haut en bas, Miche et Ramseier (1971) ont classifié cette texture en quatre grandes catégories [6].
Précipitations givrantes
Les précipitations givrantes, selon l’influence des variations de température près du sol et à quelques centaines de mètres du sol, peuvent causer du verglas, de la neige mouillée ou de la neige sèche [8].
Variation des paramètres de déformation viscoélastique en fonction de la température
Comme on voit au Tableau 5–10, la valeur du paramètre b augmente avec la diminution de la température, dans l’intervalle de -5 à -10 °C, alors qu’il demeure constant dans l’intervalle -10 à -15 °C. On observe le même phénomène pour le paramètre c1 en rapport avec ces deux intervalles.
Contribution des déformations
Contribution des différentes composantes de déformation dans la déformation totale
Afin de déterminer la contribution de chaque composante de déformation en fonction du temps, les paramètres identifiés pour chacun de ces composantes, c1 et b pour la déformation viscoélastique, M, N et K pour le fluage primaire, ainsi que B et n pour le fluage secondaire sont utilisés dans les équations 2.3, 2.37 et 4.1 respectivement. Pour chaque temps t et à une température donnée, la valeur de chacune de ces composantes est divisée par la valeur de la déformation totale. Ces contributions en fonction du temps sont présentées à la Figure 5.7.
En ce qui concerne la valeur de la déformation plastique, elle est constante à chaque température ( Tableau 5–4). Comme on peut le constater à la Figure 5.7-a, la contribution de la déformation plastique dans la déformation totale de la glace liée à des contraintes de compression uniaxiale est très grande par rapport aux autres composantes de la déformation pour la température de -5°C. Toutefois, cette différence diminue lorsque la température baisse. Pour toutes les températures en général, on peut dire que la contribution de cette composante de la déformation est relativement importante.
Pour la contribution à la déformation de fluage primaire, comme on peut aussi le voir dans la majorité des matériaux [44], elle est plus importante au début du processus de chargement, alors que celle liée au fluage secondaire prend le relai par la suite.
Pour chaque valeur de température, la déformation élastique durant les essais demeure pratiquement constante puisque le module de Young et le niveau de contrainte durant l’essai sur la glace sont considérés comme constants; cependant la contribution de cette déformation est importante au début de la phase de chargement, puis elle diminue légèrement avec le temps.
Concernant la déformation viscoélastique, comme celle du fluage primaire, sa contribution pour les trois valeurs de température augmente considérablement au début du chargement et par la suite elle diminue légèrement.
Effet de la température sur la contribution des déformations
Un élément novateur de ce travail est la prise en compte de la déformation plastique instantanée, de même que la vérification de l’effet de la température sur la contribution de cette déformation dans la déformation permanente. Ainsi, la contribution des deux autres composantes (fluage primaire et secondaire) dans la déformation permanente a été calculée en fonction de la température (Figure 5.8). Comme on peut voir dans cette figure, la contribution du fluage primaire dans la déformation permanente augmente de façon très prononcée lorsque la température diminue. À une température de -5°C, qui est proche du point de fusion de la glace, la contribution du fluage primaire est plus basse que par rapport aux températures de -10 et -15°C (Figure 5.8-a). Pour le fluage secondaire, contrairement au fluage primaire, sa contribution augmente, dans la déformation permanente lorsque la température augmente. La contribution du fluage secondaire dans la déformation permanente est moins élevée pour -15°C que pour -5°C (Figure 5.8-b). Pour la déformation plastique (Figure 5.8-c), la contribution de cette déformation, dans la déformation permanente, est en relation proportionnelle avec la température.
Délestage
Le délestage est la chute soudaine de dépôts de glace sur des câbles électriques et qui peut se produire suite à des mécanismes physiques comme la fusion, la sublimation ou des bris mécanique de la glace [3].
Délestage par fusion
La fonte de la glace sur les lignes électriques se produit lorsque la température de l’air est égale ou supérieure à 0 °C. Le délestage par fusion comprend deux phases. La première phase est la fonte de dépôts de glace avec un faible taux relatif de réduction de la masse de glace et la deuxième phase est la chute des morceaux de glace sous l’effet de la gravité et du vent. Ce type de délestage est influencé par plusieurs paramètres comme la vitesse du vent, le rayonnement solaire, etc. [3, 9].
Délestage par sublimation
La définition de la sublimation en physique est le passage direct d’une matière de la phase solide à la phase gazeuse [10].
Les plus importants facteurs atmosphériques qui affectent ce type de délestage sont l’humidité relative, la température et la vitesse du vent [11].
Délestage par bris mécanique
Le délestage par bris mécanique se produit à des températures inférieures à 0 °C. Ce type de délestage peut être dû à la faible adhésion entre la glace et le câble. Ce problème dépend du type de chargement que subit le dépôt de glace comme une charge statique (torsion, compression, traction), dynamique (galop, fatigue), ou autres [11].
Dans le cadre de cette thèse, seule le délestage par bris mécanique sera considéré. Pour cela, il faut connaitre le comportement mécanique de la glace qui est un facteur déterminant dans l’étude de son comportement fragile et de sa déformation, à la source du délestage.
Étude bibliographique sur les propriétés mécaniques de la glace
Plusieurs chercheurs ont essayé de déterminer les paramètres mécaniques de la glace. Dantl, en 1969 [12] a étudié le module d’élasticité de la glace. Pounder et Langleben, en 1963 [13], et aussi Markham, en 1962 [14], ont déterminé les paramètres élastiques de la glace et les relations entre ces paramètres. Nakaya, en 1959 [15], a déterminé la propriété viscoélastique de la glace. Le travail le plus cité dans la littérature est celui de Sinha, en 1989 [7], qui a étudié les paramètres élastiques des différents types de glace (granulaire, S1, S2, S3). Ces analyses fournissent une base sur laquelle les valeurs mesurées du module d’élasticité de différents types de glace peuvent être comparées. Son travail fournit également trois relations pour le module d’élasticité, le module de cisaillement et le coefficient de Poisson (Figure 2.5).
Validation du modèle développé
Déformation plastique instantanée
Afin de valider l’existence de la déformation plastique instantanée dans la procédure de compression de la glace, on a appliqué un chargement instantané sur un échantillon de glace à température constante. Ceci a été effectué pour mesurer la déformation permanente. Ensuite, on a comparé les valeurs de cette dernière avec celles calculées en utilisant le modèle de comportement développé dans ce chapitre. Pour cela, deux essais de compression simple à -10°C ont été réalisés. La déformation permanente a été déterminée en mesurant la longueur des échantillons avant et après l’application du chargement en accordant un temps suffisant pour la stabilisation et récupération de toutes les déformations récupérables.
Le problème rencontré avec la machine MTS utilisée, ou plus généralement pour tout essai mécanique avec n’importe quelle machine du même genre, est qu’on ne peut pas vraiment appliquer un chargement instantané. Par exemple, si on veut appliquer un chargement constant de 0,8 MPa, on partira de 0 pour augmenter linéairement le chargement jusqu’au chargement désiré, le processus de stabilisation du chargement prenant environ 30 secondes. On ne peut donc pas appliquer un chargement instantané. Deux essais ont été réalisés à température -10°C et contrainte constante de 0,8 MPa. La déformation permanente mesurée est présentée au Tableau 5–11.
Malgré le fait que la contribution de fluage primaire et secondaire durant les 30 secondes du temps de chargement soit négligeable, ces déformations ont été calculées avec les équations 2.37 et 4.1 en utilisant les constantes calculées pour ces déformations à la température -10°C.
Les essais de fluage ont été réalisés avec une contrainte constante. Puisque le chargement appliqué augmente de 0 à 0,8 MPa linéairement sur 30 secondes et ensuite s’arrêter, nous avons considéré une vitesse de contrainte égale à 0,8/30 sur une durée de 30 secondes, et calculé la contrainte pour chaque seconde de chargement. Ensuite, les déformations de fluage primaire et secondaire ont été calculées avec les contraintes calculées pour chaque seconde sur la durée de 30 secondes. Les contraintes pour les 8 premières secondes sont montrées à la Figure 5.9. Les valeurs de déformation primaire et secondaire ont été calculées sur 30 secondes, tel que présentées au Tableau 5–12.
Validation de fluage secondaire
Comme on a vu à la section 4.2.4, les valeurs des constantes B et n dans la loi de Glen ([25]) ont été déterminées par les valeurs de contrainte au plateau des essais de compression uniaxiale (essais avec la vitesse de déformation constante). Afin de valider ces données, il fallait déterminer les valeurs des paramètres B et n par les essais de fluage, et les comparer avec celles des essais de compression uniaxiale avec la vitesse de déformation constante. Puisque les essais de fluage ont été réalisés pour une seule valeur de contrainte, il n’était pas possible de déterminer les valeurs de B et n. Par contre, nous avons pu déterminer la vitesse de déformation (?̇) avec les essais de fluage, laquelle est équivalente à la pente de la courbe de déformation en fonction de temps dans la partie de fluage secondaire. La vitesse de déformation a été calculée également par les valeurs de B et n déterminées pour chaque température en utilisant la loi de Glen (équation 4.1). Ces valeurs sont présentées dans le Tableau 5–13.
Conclusion
L’existence de la déformation plastique instantanée pour la glace isotrope à plusieurs températures a été vérifiée et calculée. Cette déformation n’est pas dépendante du temps, mais varie selon la température et augmente avec l’augmentation de la température puisque l’écoulement plastique dans la glace à des températures plus proches du point de fusion est plus élevé par rapport à la température loin du point de fusion.
Les constantes M, N et K pour le fluage primaire ont été déterminés. La gamme de valeurs du paramètre M ou exposant d’écrouissage est de 3 à 25,4. La variation du paramètre N qui est l’exposant de la viscosité est entre 10 et 15,5. La gamme de valeurs du paramètre K qui est dépendant de la résistance des matériaux est comprise entre 3 à 38,3.
La contribution de chaque composante de la déformation dans la déformation totale en fonction du temps à chaque valeur de température et de contrainte appliquée a été calculée. Les résultats permettent deux observations.
La contribution de la déformation plastique dans la déformation totale est très importante par rapport aux autres composantes de déformation à une température proche du point de fusion. Les résultats d’analyse montrent aussi que pour toutes les températures, la contribution de cette composante est importante dans la déformation de la glace.
Pour la contribution de déformation de fluage primaire, on a observé qu’au début du processus de chargement, la contribution de cette déformation est plus importante; par la suite, c’est la contribution de déformation liée au fluage secondaire qui devient plus importante.
Les effets de la température avec différentes valeurs de contrainte i.e. (-5°C, 0,5 MPa), (-10°C, 0,8 MPa) et (-15°C, 1 MPa) sur la contribution des différentes composantes de la déformation permanente dans le processus de fluage ont été étudiés. Les résultats permettent trois autres observations.
La contribution du fluage primaire dans la déformation permanente augmente de façon très prononcée avec la diminution de la température.
Pour le fluage secondaire, contrairement au fluage primaire, la contribution de cette composante de déformation dans la déformation permanente augmente avec l’augmentation de la température.
La contribution de la déformation plastique dans la déformation permanente diminue lorsque la température baisse
|
Table des matières
CHAPITRE 1 : INTRODUCTION
1.1 PROBLEMATIQUE
1.2 OBJECTIF GENERAL
1.3 OBJECTIFS SPECIFIQUES
1.4 ORIGINALITE
1.5 METHODOLOGIE
1.5.1 Fabrication de la glace isotrope avec un degré minimum d’anisotropie et de porosité
1.5.2 Étude de la structure cristalline de la glace à l’aide du microtomographe à rayons X
1.5.3 Choix de la méthode de fabrication de la glace
1.6 REALISATION DES ESSAIS MECANIQUES
1.6.1 Les essais de compression uniaxiale avec la vitesse de déformation constante
1.6.1.1 Les essais de compression uniaxiale avec la contrainte constante (fluage)
1.7 DEVELOPPEMENT ET VALIDATION DU MODELE DE COMPORTEMENT DE CE MODELE
1.7.1 Détermination du fluage secondaire
1.7.2 Détermination de la déformation plastique instantanée
1.7.3 Identification du fluage primaire
1.7.4 Identification de la déformation de recouvrance
1.8 INTERPRETATION DES RESULTATS
1.9 ÉVALUATION DE LA CONTRIBUTION DES DEFORMATIONS
1.9.1 Contribution des composantes de la déformation dans la déformation totale
1.9.2 Effet de la température sur la contribution des composantes de la déformation
1.10 STRUCTURE DE LA THESE
CHAPITRE 2 : REVUE DE LA LITTÉRATURE
2.1 LA STRUCTURE CRISTALLINE DE LA GLACE
2.2 LE GIVRAGE ATMOSPHERIQUE
2.2.1 Précipitations givrantes
2.2.2 Nuages givrants
2.3 DELESTAGE
2.3.1 Délestage par fusion
2.3.2 Délestage par sublimation
2.3.3 Délestage par bris mécanique
2.3.4 Étude bibliographique sur les propriétés mécaniques de la glace
2.4 LES MODELES DE CONTRAINTE/ DEFORMATION
2.5 CONCLUSION
CHAPITRE 3 : METHODOLOGIE EXPERIMENTALE
3.1 ÉTUDE EXPERIMENTALE
3.1.1 Fabrication de la glace
3.1.2 Méthode 1
3.1.3 Méthode 2
3.1.1 Méthode 3
3.2 PREPARATION DES ECHANTILLONS
3.3 TOMOGRAPHIE A RAYONS-X
3.4 LES ESSAIS MECANIQUES
3.4.1 Les essais de compression uniaxiale avec une vitesse de déformation constante
3.4.2 Les essais de compression uniaxiale avec une contrainte constante (fluage)
CHAPITRE 4 : PROPRIETES STRUCTURELLES ET COMPORTEMENT DE COMPRESSION SIMPLE DE LA GLACE ISOTROPE POLYCRISTALLINE
4.1 INTRODUCTION
4.2 RESULTATS ET DISCUSSION
4.2.1 L’évaluation des paramètres physiques de la glace produite par différentes méthodes
4.2.2 L’évaluation du comportement mécanique de la glace fabriquée par différentes méthodes
4.2.3 Effets de la température et de la vitesse de déformation sur le comportement mécanique
4.2.4 Détermination des paramètres de fluage secondaire
4.3 CONCLUSION
CHAPITRE 5 : DEVELOPPEMENT D’UN MODELE DE COMPORTEMENT DE DEFORMATION DE LA GLACE ISOTROPE
5.1 INTRODUCTION
5.2 ÉTUDE EXPERIMENTALE
5.2.1 Les essais de fluage
5.3 LE MODELE DE COMPORTEMENT DEVELOPPE
5.3.1 Détermination de la déformation permanente
5.3.2 Détermination de la déformation plastique
5.3.3 Identification du fluage primaire
5.4 IDENTIFICATION DE LA DEFORMATION DE RECOUVRANCE
5.5 INTERPRETATION DES RESULTATS
5.5.1 Effet de la température sur la déformation plastique
5.5.2 Variation des paramètres de fluage primaire en fonction de la température
5.5.3 Variation des paramètres de déformation viscoélastique en fonction de la température
5.6 CONTRIBUTION DES DEFORMATIONS
5.6.1 Contribution des différentes composantes de déformation dans la déformation totale
5.6.2 Effet de la température sur la contribution des déformations
5.7 VALIDATION DU MODELE DEVELOPPE
5.7.1 Déformation plastique instantané
5.7.2 Validation de fluage secondaire
5.8 CONCLUSION
CHAPITRE 6 : CONCLUSIONS ET PERSPECTIVES
6.1 CONCLUSIONS
6.2 PERSPECTIVES
Références
Annexes
Télécharger le rapport complet