DYNAMIQUE DE POPULATION DANS DES HABITATS CONTRASTANT

Spatial variation in recruitment

ย  Over the l OO -km extent of our stud y area, we observed substantial spatial variation in recruitment. Such variation is not surprising as the recruitment of invertebrates with planktotrophi c life cyc les is notori ously variable in marine systems (Harris et al. 1998). However, our experimenta1 design permitted us to examine this variatio n over three spatial scales: between sites (10 km – ยซย regionalย ยป); within sites (100 m – ย ยป localย ยป), and between collectors (10 m – ยซย neighborhoodย ยป). Although substantial vari ation was observed at aIl three scales, there was only signiftcant variation at the smallest sca le, i.e., at the neighborhood leve l, a very unexpected result that suggests that the distribution of larvae is more homogeneous at the larger sca les and that the ecological processes influencing larval settlement are very heterogeneous at small spatial scales. At this point, there is no obv ious environmental factor th at we can identify that might explain this pattern of variation, and it stands in contrast to earlier studies (McKindsey & Bourget 2000, Smith et al. 2009) conducted in this same system which showed heterogeneo us pattern s of recruitment dominating at a much large r scales (4-30 km). It is likevvise surprising that there was no correlation between recruitment in subtidal habitats and recruitment in intertidal habitats. Given the proximity of the two habitats at a given site (usuall y less than 1 km) relative to the 10-km separation of the sites, one would expect both habitats to have a similar exposure to potential recruits (i.e. , be in the same water mass). Perhaps the lack of any patterns was due to the general lack of signift cant variation at this spatial scale (see above), but this result suggests that one cannot sim ply assume that different habitats that are in close proximity will have similar conditions. In particular, there may be substantial bathymetric differences in water movement that determine the supply of larvae to a particular location (Archambault & Bourget 1999). For example, bottom topography might interact with coastal currents to alter the flow of water across the bottom. Other hypotheses have also been proposed to expl ain variability in recruitment between habitats including variable rates of the survival of larvae and postsettlement stages (Yoo & Ryu 1985), larval behavior (Dobretsov & Miron 2001), settlement density (Grant 1977), tidal conditions during settlement periods (Porri et al. 2007), and physical barri ers (Broitman et al. 2008). The lack of any correlation between the abundance of adults and recruits in intertidal environments is also surprising in certain senses. Given the wide dispersa l of musse l larvae during their planktonic period, no relationship between adults and recruits would be expected in terms of local reproduction (i.e. , local larval retention wou Id be unlikely). However, as a cue for settlement, the presence of adult musse ls is weil known to enhance recruitment (Menge 199 1), either directly (i.e., settl ement within ex isting ad ult beds) or indirectly by prov iding loca l sources for secondary recruits (post-settlement juveniles that disperse locall y via wave action). Thus, sites of hi gh adult abundance would a priori be expected to have hi gher recruitment. However, possible negative effects of the fi ltration of larva l stages by adults (Lehane & Davenport 2004) or annual vari ation in larval supp ly could counter any such trend, making it diffi cult to detect. Finally, predation ofrecruits can influence the abundance of later stages (Keo ugh & Downes 1982), and we know li ttle about the sources of mortality of early post-settlement stages of musse ls. Final ad ult distributio n may thus be the result of a combinati on of physica l processes and biological postsettlement mechanisms (Johnson & Ge ll er 2006).

Contrasting habitats

ย  ย Blue musse ls are ecological known as intertidal mussels, likely due to bath the bias of benthi c studies bein g dispro portionally conducted in this environment and the reality that survival really is best in this environment. lt is thus rather ironie that in terms of its fundamenta l and realized niches, this mussel appears to be exc luded from the habitats where its intrinsic performance is highest, namely the subtidal environment. Our limited data on the differences in growth between subtidal and intertidal habitats are nonetheless convincing, and correspond with more extensive data fo r musse ls that are continuously submerged intentionall y (e.g., musse ls in aquaculture; Mallet & Carver 1989) or unintentionall y (Page & Hubbard 1987, Bourget et al. 2003) where growth rates are almost al ways faster compared to intertidal populati ons (exceptions occur when fo uli ng organisms are killed by emersion). It seems then that by inhabiting submerged habitats, musse ls decrease physiological stress and increase access to food, resulting in hi gher growth rates and greater reproducti ve effort. Under more natural systems, however, it appears that the benefits of occupyin g the optimal habitat are more than offset by the res ul ting decrease in survival from predation. Thus, as seen for many intertidal organisms, abundances are highest in the spatial refuges created by environmental stresses that excl ude predators.For these two contrasting habitats, we thus see two diffe rent eco logies, one in which the species is an ecosystem engineer, prov iding both physica l structure and secondary production to the local environment and the other in which it is a rare species, contributing little to the local assemblage. This knowledge is essenti al fo r a proper understanding of the ecosystem in many regards. Most obviously, we know that in spite of the enormous potential for secondary producti on in subtidal environments, little is actually occurring, at least by mussels. Less obviously, in terms of the metapopulation dynami cs of musse ls in the SLME (Sm ith et al. 2009), our results show that f r estimating dynamics and connectivity, the acti on is happening principall y in the intertid al environments and that a knowledge of the relative abundance of intertidal populations is sufficient for estimating the sources of propagules. Thu s, by knowing more about the entire role of this species in the multiple environments, we can be better able to understand its dynami cs and its influence on the rest of the community

CONCLUSIONS

ย  ย L’objectif principal de cette thรจse est de dรฉterminer la rรฉpartition bathymรฉtrique et spatiale des populations de moules dans une large zone de l’EMSL et d’รฉvaluer la contribution potentielle des ยซ populationsยป infralittorales ร  la dรฉmographie de l’ensemble de la mรฉtapopulation . Pour comprendre le fonctionnement d ‘ une mรฉtapopulation, il est essentiel de connaรฎtre la rรฉpartition rรฉelle de toutes les sous-populations qui pourraient contribuer ร  sa dynamique. Pour les espรจces de la zone cรดtiรจre, il faudrait donc vรฉrifier la prรฉsence, ou l’ absence, de populations notoires dans les รฉtages infralittoraux et mรฉdiolittoraux (Lawrie & McQuaid 2001). Dans le cas de la moule bleue, il s’agit d’ une espรจce dominante et bien connue dans un des habitats (l’รฉtage mรฉdiolittoral), mais cette espรจce pourrait รฉgalement vivre et รชtre frรฉquemment observรฉe dans un autre type d’ habitat (l’รฉtage infralittoral). Dans un contexte de mรฉtapopulation, il en va de la validitรฉ des modรจles de bien รฉvaluer l’importance des populations infralittorales. ร‰tant donnรฉ le cycle vital complexe de plusieurs invertรฉbrรฉs benthiques, il faudrait รฉgalement connaรฎtre la dynamique des stades adulte et larvaire. Pour ce faire, j’ai รฉvaluรฉ l’abondance des adultes (c ‘est-ร -dire la source des larves) ainsi que le recrutement (c’est-ร dire la dissรฉmination des larves) dans ces deux habitats contrastants. Pour rรฉpondre aux deux questions fondamentales sur le suivi des larves ยซ oรน vont les larves? ยป et ยซ d ‘oรน proviennent les nouvelles recrues? ยป, il est recommandรฉ d’intรฉgrer des approches spatiales et temporelles (Levin 2006). En effet, on ne peut pas se fier ร  une รฉtude qui ne comprend qu’un seul ou mรชme quelques sites. Nous avons donc documentรฉ l’abondance des moules dans les zones mรฉdiolittorales et infralittorales de dix sites distribuรฉs le long d ‘ une cรดte homogรจne de 100 km. Le rรฉsultat le plu รฉv ident est qu ‘ il n’existe pas de populations importantes en milieu in fralittoral dans ce secteur de l’EMSL. Par extrapolati on, il est donc peu probable que des populations infralittorales soient prรฉsentes ร  l’รฉchelle de l’ensemble de l’รฉcosystรจme du Saint-Laurent. Ce la veut dire que les modรจles de mรฉtapopulations de moul es qui se basent sur l’รฉvaluation des populations mรฉd iolittora les (Smith et al. 2009, Le Corre et al. 2013) ont supposรฉ correctement que l’on peut ignorer la contribution dรฉmographiq ue des moules in fraiittorales. ร‰tant donnรฉ que d’abondantes populations de moules bl eues peuv ent parfois รชtre observรฉes en mili eu infra littoral ยซ naturel ยป (c’est-ร -dire des populations importantes au fond) et souvent observรฉes dans des conditions ยซ artificiell es ยป (c’est-ร -dire l’รฉlevage en aquaculture), il faut chercher des expli cations รฉcologiques aux rรฉsultats constatรฉs dans l’EMSL. D’ abord, mes donnรฉes dรฉmontrent clairement qu ‘ il ne s’agit pas d’ un manque de recrutement, car les collecteurs installรฉs sur la zone d’รฉtude ont montrรฉ un fort recrutement dans la zone infralittorale. Bien que le taux de recrutement observรฉ ne reprรฉsente que la moitiรฉ de ce lui observรฉ dans les habitats mรฉdiolittoraux, les taux de recrutement des deuxmilieux ne sont pas significativement diffรฉrents et les populations de mou les ne semblent pas limitรฉes par le recrutement. Cependant, il faut aussi tenir compte du fait que les donnรฉes des collecteurs ont relatives, on ne peut donc pas supposer que le taux de recrutement sur des substrats naturels est du mรชme ordre de grandeur. Les collecteurs รฉtant sรฉlectionnรฉs pour leur attractivitรฉ par rapport aux larves, les taux de recrutement sont donc sans doute surestimรฉs.

Le rapport de stage ou le pfe est un document dโ€™analyse, de synthรจse et dโ€™รฉvaluation de votre apprentissage, cโ€™est pour cela chatpfe.com propose le tรฉlรฉchargement des modรจles complet de projet de fin dโ€™รฉtude, rapport de stage, mรฉmoire, pfe, thรจse, pour connaรฎtre la mรฉthodologie ร  avoir et savoir comment construire les parties dโ€™un projet de fin dโ€™รฉtude.

Table des matiรจres

REMERCIEMENTS
AVANT-PROPOS
Rร‰SUMร‰
ABSTRACT.
TABLE DES MATIรˆRES
LISTE DES TABLEAUX
LISTE DES FIGURES
LISTE DES ABRร‰VIATIONS, DES SIGLES ET DES ACRONYMES
INTRODUCTION GENERALE
CHAPITRE 1. DYNAMIQUE DE POPULATION DANS DES HABITATS CONTRASTANTS: DISTRIBUTION ET FACTEURS LIMITANTS POUR LA MOULE MYTfLUSS PP. AUX MEDIOLITTORAL ET INFRALITTORAL DANS L’ESTUA IRE DU SAINT- LAURENTย 
Rร‰SUMร‰
lntroduction
Methods
Results
Discussion
CHAPITRE 2. CONCLUS IONS ET PERSPECTIVES
Rร‰Fร‰RENCES BIBLIOGRAPHIQUES .

Rapport PFE, mรฉmoire et thรจse PDFTรฉlรฉcharger le rapport complet

Tรฉlรฉcharger aussi :

Laisser un commentaire

Votre adresse e-mail ne sera pas publiรฉe. Les champs obligatoires sont indiquรฉs avec *